

CPS-based on-chip THz TDS device series

KEY FACTS:

- On-chip THz time-domain spectrocopy (TDS) platform.
- Enables THz TDS at micron-scale devices/samples much smaller than the THz diffraction limit.
- Can be operated in small cryo chambers at low temperatures or in magnetic fields.
- Supports exchangable daugther-boards as sample carriers for cost-efficient operation.
- Customizable on request.

TeraLineX TD-800-CPS

Model: CLSD-5MM

CLSD-5MM, Time-domain measurement performance

CLSD-5MM, Frequency-domain measurement performance

TeraLine TD-800-CPS-CLSD-5MM

Technical specifications

TeraLine TD-800-CPS- CLSD-5MM	Emitter	Detector
PC gap size	10 μm	10 μm
Dark current @ 1 V Bias	< 0.5 nA	< 0.5 nA
Photocurrent	> 0.1 µA ^(a)	> 0.1 µA ^(b)
Excitation wavelength	700 860 nm	
Avg. excitation power	0.1 4 mW	0.1 4 mW
Connection type	SMP	

 $^{^{(}a)}$ For a focus diameter of circa 30 $\mu m,$ bias voltage 9 V , average optical excitation power 4 mW.

 $^{^{\}text{(b)}}$ For a focus diameter of circa 30 $\mu m,$ bias voltage 1 V , average optical excitation power 4 mW.

TeraLine TD-800-CPS-CLSD-5MM

PCB dimensions

Model: CLSD-5MM

- Questions?
- Please contact us under info@protemics.com

