TeraBlast Front

The new bias-free Terahertz emitter series TeraBlast from Protemics are optically pumped THz sources which can be used with a wide range of femtosecond laser sources (such as low power oscillators or amplified lasers with wavelengths in the range of 700..1600 nm). They are ideally suited and tested for near-field imaging applications including TeraSpike microprobe operation. The TeraBlast is however also a great emitter for far-field spectroscopy and other THz applications.

TeraBlast emitters are based on a patent pending technology (German patent application: DE102012010926 A1) utilizing bi-metallic grating structures for the optical bias-free generation of Terahertz radiation. The emitters offer a large active area and can be excited by pulsed Femtosecond lasers within a broad range of average power from 5 mW up to above 1 W without causing the typical signs of conversion efficiency saturation or device failures as known from small-scale photoconductive antennas. Furthermore, TeraBlast emitters are the ideal solution for applications where THz pulse generation needs to occur in close proximity to photoconductive detection (e.g. near-field detection or butt-coupled waveguide excitation). In such situations voltage-biased emitters are often unusable because of strong parasitic coupling effects from modulated photocurrents which are avoided for the bias-free TeraBlast emitters. 

Key benefits:
  • High conversion efficiency due to advanced nano-scale bi-metal structure design
  • High emission power from saturation-free large active area
  • Recommended THz source for TeraSpike microprobe operation
  • Unmatched simple handling
  • Virtually no alignment/focusing effort
  • Can be used as a point source or array emitter
  • Linearly polarized emission
  • Extremely robust due to bias-free operation
  • No device failure on local short-cut defects
  • No dark current
  • No parasitic off-set signal generation in lock-in detection schemes
Radiation characteristic and working principle:

THz pulse emission is generated by optical excitation of the TeraBlast emitter through femtosecond near-infrared or infrared pulses. Pulse durations < 150 fs are recommended. The emitted Terahertz radiation is linearly polarized. The following plot is showing an exemplary measurment of the emitted THz field which is line scanned across the center of the TeraBlast emitter in time-domain using a TeraSpike microprobe (Model: TD-800-X-HRS). The bright fast oscillating THz frequency components are well confined to an aperture area of few millimeter size, whereas GHz radiation is emitted over a much wider range. The emission profile can be easily adapted by adjusting the focussing of the optical excitation beam.

Bimetal emitter scheme and radiation profil 500

Exitation scheme: The THz emission process is based on Schottky-field induced lateral photo-currents (jph) at the multiple asymmetric metal/semiconductor junctions.

TD and FD Data TD 1550 L 165

Measurement example (TeraBlast TD-1550-L-165): Far-field transmission through N2-purged free-space measured with a femto-second laser from Laser Quantum („taccor") and electrooptic detection in a 400-µm-thick GaP crystal using ASOPS based time-domain spectroscopy.

Dimensions:

TeraBlast Dimensions

Technical specifications:
 Type   TeraBlast TD-1550-L-165  
 Excitation wavelength range 700 .. 1600 nm
 Typ. average excitation power range 5 mW .. 1000 mW
 Average THz emission power > 2.5 µW (a) 
 Active area diameter ca. 10 mm (b)
 Adapter dimension (Outer diameter) 1/2 inch

 

If you are interested in this option please contact us for further information. Please also refer to our product brochure (2 MB PDF-file) for technical details.

 

(a) Measured with pyroelectric detector (Spectrum Detector Inc. SPI-D-62-THz) for 370 mW optical pump power

(b) Larger active areas possible. Please request!